Development of high average power fiber lasers for advanced accelerators

Almantas Galvanauskas
Center for Ultrafast Optical Science (CUOS), University of Michigan

16th Advanced Accelerator Concepts Workshop (AAC 2014), July 15th, Hayes Mansion, 2014 San Jose
Co-Authors

• Tong Zhou
• Cheng Zhu
• John Ruppe
• I-Ning Hu
• Xiuquan Ma
• Paul Stanfield
• Leo Siiman
• Wei-Zung Chang
• John Nees
Conceptual LPA Collider

- Based on 10 GeV modules
- Quasi-linear wake: e− and e+
- Driven by 40 J, 130 fs pulses
- 80 cm plasma channels (10^{17} cm^{-3})
- Staging & coupling modules

LASER DRIVER:
- Requires high rep-rate (10’s kHz)
- Requires development of high average power lasers (100’s kW)
- Requires lasers with high wall-plug efficiency (>25%)

Leemans & Esarey, Physics Today, March 2009
ICFA-ICUIL Joint Task Force Strategy Workshops on “High Power Laser Technology for Future Accelerators”

- 1st Workshop at GSI Darmstadt, April 9-10, 2010
- 2nd Workshop at LBNL Berkeley, September 20-22, 2011

Objectives:
- comprehensive survey representing community consensus of requirements for colliders, light sources and medical applications
- identify future laser system requirements and key technological bottlenecks
- provide vision for technology paths forward to reach the survey goals

Dielectric Laser Accelerator Workshop at Palo Alto, September 2011
Main requirements for high power fiber laser based advanced accelerator drivers (for select applications)

<table>
<thead>
<tr>
<th></th>
<th>LPA collider (10GeV stage)</th>
<th>LPA – Bella style (10GeV)</th>
<th>$\gamma - \gamma$ colliders</th>
<th>Dielectric Laser Accelerators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall-plug Efficiency</td>
<td>>25%</td>
<td>>5%</td>
<td>>25%</td>
<td>>25%</td>
</tr>
<tr>
<td>Average Power</td>
<td>480kW</td>
<td>3 - 40kW</td>
<td>100kW</td>
<td>1-10kW</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>15kHz</td>
<td>1 kHz</td>
<td>Burst mode</td>
<td>100MHz – 1GHz</td>
</tr>
<tr>
<td>Pulse Energy</td>
<td>32J</td>
<td>3 - 40J</td>
<td>5J</td>
<td>100nJ – 10µJ</td>
</tr>
<tr>
<td>Pulse Duration</td>
<td>100fs - 200fs</td>
<td>~70fs</td>
<td>1ps</td>
<td>100fs – 1ps</td>
</tr>
<tr>
<td>Pre-pulse contrast</td>
<td>Better than 10^9</td>
<td>Better than 10^9</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Preferred λ</td>
<td>~1µm</td>
<td>~1µm</td>
<td>~1µm</td>
<td>~2-4µm</td>
</tr>
</tbody>
</table>
Follow-up activities:

DOE Workshop on “Laser Technology for Accelerators”
Jan 23-25, 2013 Napa, CA

- Summary Report in 2013 (Wim Leemans)
- Laser Accelerator Stewardship Program being established by DOE HEP

International Coherent Amplification Network (ICAN)

- Phased array of femtosecond fiber lasers for driving Wakefield-based particle colliders
- 18 month pilot paper study, EU/FP7 funded
Why fiber lasers?

• Principal advantages inherent in the technology:
 – Possibility of high efficiency
 • Currently: kW cw ~35% WPE, pulsed ~ 25% WPE
 • In the future: 40% - 50% WPE anticipated
 – Possibility of high power output
 – Possibility of diffraction-limited beam output
 – Possibility of compact “monolithic” integration

• Principal challenges inherent in the technology:
 – Pulse energy limitations
 – Average power limitations for a single fiber (particularly for ‘special’ signal formats: narrow linewidth, single-mode, ultrashort pulse, etc.)
 • for example ~ 10kW to 20kW for single-mode cw; 1kW – 2kW for narrow-linewidth cw
 – Bandwidth limitations due to gain narrowing
 • For example: in 100µJ to 1mJ FCPA output pulses are typically >300fs
Yb-doped fiber wall-plug efficiency

- Optical-to-optical efficiency up to ~85%
 - Low quantum defect (pumping at 940nm, 980nm or ~1010nm → signal at 1030nm - 1080nm)

- Pump diode electrical-to-optical efficiency 45%- 55% (commercial), to >65% (state-of-the-art)

- Additional “structural” losses of diode-to-fiber, fiber-to-fiber, etc., coupling with ~80% - 90% efficiency:
 - For example: 85%(fiber)x45%(diode)x80%(structural) = 30% WPE

- In ultrafast fiber lasers there are additional losses:
 - For pulsed amplifiers at 1kHz -10kHz some pump is wasted on ASE between pulses
 - “signal processing” losses: pulse compression (80% - 90%), beam combining (>90%), pulse stacking (>90%), etc.
Average powers are limited by:
- Thermal effects
- Nonlinearities:
 - FWM, SRS, SBS, TMI (transverse modal instability)
- Optical damage
Pulse Energy Limitations

- Optical damage

![Graph showing pulse energy limitations for different core sizes.](chart.png)
Pulse Energy Limitations

- Optical damage
- Self focusing

![Graph showing Pulse Energy Limitations for 135µm core PCF rod and 55µm core CCC with self-focusing indicated.](image-url)
Pulse Energy Limitations

- Optical damage
- Self focusing
- Stored energy

![Graph showing pulse energy limitations for different core sizes](image)

- 135µm core PCF rod
- 55µm core CCC

Energy, mJ vs Duration, ns
Fiber CPA is needed for high energy ultrashort pulse generation

Pulse Energy Limitations

- Optical damage
- Self focusing
- Stored energy
- Ultrashort pulse peak power limitations due to SPM and FWM

B-integral is ~1:

\[B = \frac{2\pi}{\lambda} \int n_2 I(z) \, dz \]

Diffraction-grating compressor:
~1ns $\Delta T_{\text{stretch}}$ per ~10cm grating size
Pulse Energy Limitations

- Optical damage
- Self focusing
- Stored energy
- Ultrashort pulse peak power limitations due to SPM and FWM

B-integral is \(\sim 1 \):

\[
B = \frac{2\pi}{\lambda} \int n_2 I(z) \, dz
\]

Principal Challenge for Fiber Laser Based LPA Drivers

- High pulse energies & average powers: 32J/15kHz/480kW for 10GeV collider stage

Solution: Coherently combine multiple parallel FCPA channels

Challenge
100µJ – 1mJ per FCPA channel \Rightarrow $\sim 10^4$ – 10^5 parallel channels!
Principal Challenge for Fiber Laser Based LPA Drivers

- High pulse energies & average powers: 32J/15kHz/480kW for 10GeV collider stage

Solution: Coherently combine multiple parallel FCPA channels

Challenge

100µJ – 1mJ per FCPA channel \Rightarrow $\sim 10^4 – 10^5$ parallel channels!

Spatial Beam Multiplexing

« The future of Accelerator is Fiber »
Principal Challenge for Fiber Laser Based LPA Drivers

• High pulse energies & average powers: 32J/15kHz/480kW for 10GeV collider stage

Solution: Coherently combine multiple parallel FCPA channels

Challenge
100µJ – 1mJ per FCPA channel ➔ ~10^4 – 10^5 parallel channels!

• Technical challenges associated with very large arrays:
 – Coherent locking of >10^3 channels
 – Spatial combining of >10^3 broad-band beams at 100’s kW of average power
 – Cost, size and complexity of such large arrays
Theoretically predicted array size scalability with in-channel phase and amplitude noise

Combining efficiency “saturates” at large channel counts N, because combined power proportional to N and noise – to \sqrt{N}.

State-of-art 4-channel FCPA-array coherent combining demonstrations

1st 4-channel FCPA ‘monolithic’ array demonstration at low power

4-channel FCPA array demonstration at high power using PCF rods

94.3% efficiency for over 1 hour

Reset tests

After each reset (blocking of the signal to the feedback detector) combining recovers instantaneously.

Types of Spatial Beam Coherent Combiners

• Binary-tree arrangement:
 – Parallel

 [Diagram showing parallel binary tree with T=50% transmission at each branch]

 Complex spatial arrangement

• Diffractive optical element

 [Diagram showing complex spatial arrangement with T=50%, T=33.3%, T=25% transmission]

 Spatial dispersion

– Serial (folded spatially)

 [Diagram showing serial arrangement with T=50%, R=100%]

For N^{th} beam: $T_N = 1/N$

Fiber chirped-pulse-amplifier array is complex

Monolithic Fiber Amplifier

- Pump diode
- Yb-fiber
- WDM or Pump combiner
- Isolator
- 1:N splitter
- AOM
- FA
- EOM
- SM PZT
- Amplified stretched pulses

Stage I
(1 branch)

Stage II
(N branches)

Stage III
(N^2 branches)

Monolithic integration is essential
Fiber chirped-pulse-amplifier array is complex

Monolithic Fiber Amplifier

Stage I
(1 branch)

Stage II
(N branches)

Stage III
(N^2 branches)

LPF with up to 135 µm core
Fiber chirped-pulse-amplifier array is complex

Stage I
(1 branch)

Stage II
(N branches)

Stage III
(N^2 branches)

CCC with up to 55 um core
Summary of array-size related issues

• Coherent phasing with increasing number of channels:
 – In principle scales gracefully with the array size
 – However, technical implementation of phase error tracking and correction becomes increasingly difficult

• Spatial combining with increasing number of beams:
 – Becomes exceedingly difficult beyond $N \sim 10^2$

• FCPA array size, complexity and cost constitute a major practical challenge, which increases rapidly with the number of channels
Coherent phasing with increasing number of channels:
- In principle scales gracefully with the array size
- However, technical implementation of phase error tracking and correction becomes increasingly difficult

Spatial combining with increasing number of beams:
- Becomes exceedingly difficult beyond $N \sim 10^2$

FCPA array size, complexity and cost constitute a major practical challenge, which increases rapidly with the number of channels
Principal solution: Combine time-domain and spatial-domain multiplexing

Temporal Pulse Multiplexing

Spatial Beam Multiplexing

100 – 1000 pulses

10 – 100 parallel channels
Periodic pulse train (after stretcher)

N identical parallel coherently combined amplification channels with identical signals in each

From a pulse source

Trigger from a pulse source

Modulation-error recognition and modulation control, stacker cavity locking control

Phasing-error recognition and phase-locking electronics

Amplified and combined pulse-burst

To compressor
Coherent Pulse Stacking (CPS) in a GTI type of a resonant cavity

Input burst amplitudes and phases are selected such that:
- Pulses before the last one destructively interfere for front-mirror reflection – pulse burst is stored in the GTI cavity as a single pulse
- Last pulse constructively interferes at the front mirror to produce a single output pulse – stored energy is extracted
Proof-of-Principle Experiments with ns and fs pulses

Mode-lock Laser + Stretcher (for fs EXP) OR CW Laser (for ns EXP)

Monitor signal

AM & PM

SMFA

LMA Amp.

CCC Amp.

HWP

PBS

Monitor Det.

Feedback

PZT Mirror

GTI Stacker

Input

Stacked Output

Compressor

Output

ns EXP

fs EXP
CPS Experimental Results

Nanosecond Experiment
- Input
- Stacked Output
- 10kHz inter-burst repetition rate
- 200MHz in-burst repetition rate
- Up to 12W/1.2mJ per stacked pulse
- 93% efficiency (due to 93% folding mirror)
- Enhancement 2.5 times
- Contrast ~17dB

Femtosecond Experiment
- Input
- Stacked Output
- 97% efficiency
- 125MHz in-burst repetition rate
- Autocorrelation 600fs

Input/Stacked pulses:
- 1ns duration
- 10kHz inter-burst repetition rate
- 200MHz in-burst repetition rate
- Up to 12W/1.2mJ per stacked pulse
- 93% efficiency (due to 93% folding mirror)
- Enhancement 2.5 times
- Contrast ~17dB
Scalability of the Coherent Pulse Stacking (CPS) Technique

- Multiplexing several (8 to 15) GTI cavities enables large $(10^2 - 10^3)$ pulse stacking/peak-power enhancing factors.

- Design example of a 8-multiplexed GTI cavity pulse stacker:

Input 81-pulse burst

Output solitary stacked pulse

GTI traveling-wave cavities can be compactly folded as Herriott cavities

N bounces in the cavity:
$cavity \, d = L/N$
CPS can enable extracting all stored energy with negligible nonlinearity

- Optical damage
- Self focusing
- Stored energy
- Ultrashort pulse peak power limitations due to SPM and FWM

B-integral is \(\sim 1 \):

\[
B = \frac{2\pi}{\lambda} \int n_2 l(z) \, dz
\]
Other time-domain multiplexing approaches

Divided Pulse Amplification (DPA)

- Splitting and combining stages
- Small number (N ~ 4 to 10) of stacked pulses
- Delay line length exponentially increases with the number of pulses 2^N

Other Key Technical Issues for Fiber Laser Based LPA Drivers

• High pre-pulse contrast of $>10^9$ is required

![Graph showing normalized intensity vs time](image)

• Requires operation at low B-integral values
• Requires dispersion and phase compensation techniques
Other Key Technical Issues for Fiber Laser Based LPA Drivers

• Pulse duration <200fs is required

1.45mJ and 800fs result

• Coherent Spectral Beam combining can address it

Summary/Future Outlook

• Technical concepts exist to address all principal FCPA based LPA driver design challenges
 – Temporal and spatial multiplexing can lead to relatively small array sizes (~\(10^1\) to \(10^2\)), significantly reducing cost and technological complexity
 – Objective will be to extract all stored energy per amplifier without detrimental nonlinear effects, thus improving pulse fidelity (duration and pre-pulse contrast)
 – Spectral coherent combining can be used to achieve required pulse durations in the 50fs -200fs range

• This can enable next-generation TW – PW LPA drivers operating at kHz repetition rates

• There are numerous other important technical issues that are necessary to address:
 – Developing techniques for achieving high pre-pulse contrast
 – Optics for high power beam combiners and pulse compressors
 – pulsed laser efficiency optimization
 –